$$
\begin{aligned}
& 11-96-01 \\
& I I-A-192
\end{aligned}
$$

EPA 550/9-82-204-C

RAIIROAD CASH FLOW MODEL SOFTWARE DOCUMENTATION

VOLUME 3
CASH FLOW MODEL PROGRAMMER'S MANUAL

i January 1982
U.S. Environmental Protection Agency Waahington, D.C. 20460

RAILROAD CASH FLOW MODEL SOFTWARE DOCUMENTATION

VOLUME 3

CASH FLOW MODEL PROGRAMMER'S MANUAL

January 1982

> Office of Noise Abatement and Control
> U.S. Environmental Protection Agency
> Washington, D.C. 20460

This report has been approved for general availability. The contents of this report reflect the views of the contractor, who is responsible for the facts and the accuracy of the data presented herein, and do not necessarily reflect the official views or policy of EPA. This report does not constitute a standard, specification, or regulation. Permission is granted to reproduce this material without further clearance.

TABLE OF CONTENTS

Section Page
3.1 Introduction 3-1
3.2 Model Design 3-1
3.2.1 Technical Specifications 3-1
3.2.2 Data Requirements 3-2
3.2.3 Algorithms 3-8
3.3 Data Definitions 3-16
3.3.1 Introduction 3-16
3.3.2 Arrays and Array Indices 3-16
3.3.3 Constants 3-21
3.3.4 Variables 3-22
3.4 Annotated Listing of the program 3-24
3.5 Verification and Test procedures 3-35
Appendices
A Data Files Used by CASHFLOW 3-36
B Correspondence of Firms to Firm Number 3-54
C Errata Sheets 3-5٪

LIST OF TABLES

3-1 Data File Summary 3-3
3-2 Key Financial Parameters: File 3-7EPAJHV.S2KC.MISC
3-3 Array Definitions 3-17
3-4 Array Markers 3-19
3-5 Definition of Constants 3-21
3-6 Definition of Variables 3-22
LIST OF FIGURES
1 Flow Diagran of Railroad Cashflow Model 3-9

RAILROAD CASH FLOW MODEL PROGRAMMER'S MANUAL

3.2 Model Design

This section has three parts: technical specifications, data requirements and algorithms.

3.2.1 Technical Specifications

The cash flow model is resident in the EPA's Washington Computer Center (WCC). It is called CASHFLOW, but it must be accessed by typing:

USE SCN.EPAJHV.S2KC.CASHFLOW

In order to bring it into the user's. workspace from the EPAJHV.s2KC area.

The program is written in standard IBM FORTRAN-IV and has approximately 340 lines.

Job control language to run the program and make the output available for retrieval from a remote terminal is stored in a program called RUNCASH which is stored on Volume USER63 of the area EPAJHV.S2KC. To run CASHFLOW, one must bring RUNCASK into one's workspace, and then instruct the computer to run RUNCASH. This is done by typing USE SCN. EPAJHV.S2KC.RUNCASH and then RUN NOTIFY.

The author of CASHFLOW is Energy Resources Co. Inc., Cambridge, Massachusetts.

3.2 .2 Data Requirements

3.2.2.1 Summary of Data Requirements

Six data files are accessed when the cash flow model is run. The use of multiple data files allows easy access to individual datums and facilitates updating the data. The format of each data flle is described below. Table 3-1 summarizes the necessary data files, their computer names and their contents.

Examples of all data files are available in Appendix A.

TABLE 3-1
DATA FILE SUMMARY

NAME	CONTENTS
CN.EPALYG.S2KC.YDINV	Firm-by-firm yard inventory
CN.EPALYG.S2KC.GNPDEF	Gross national product deflators, 1973-1980
CN.EPAJHV.S2KC. PVCST1	Yearly investment and de- preciation charges, by yard type
CN.EPALYG.S2KC.CAST8ONE	Net income forecasts - baseline and after regulation
CN.EPAJHV.S2KC.BASE	Key financial parameters

Abstract

3.2.2.2 Yard Inventory

A railroad-by-railroad yard inventory is needed. This yard inventory is given the computer name $\$ \mathrm{SN} . \mathrm{EPALYG}^{\text {I }}$ S2KC.YDINV and is resident on WYLBUR. The inventory is set up in a matrix where the rows are firms and the columns are yard types. Column 2 is Hump Yards, 3 is Flat Classification, 4 is Flat Industrial, and 5 is Small Industrial. Column 1 is the firm number.

3.2.2.3 Gross National Product Deflators

Deflators are needed to correct historical financial data to 1980 dollars. These deflators are stored in one column in FS. 1 format. The first row is the deflator for 1973, the second for 1974, etc., and the eighth row is the deflator for 1980.

The computer name for the deflator file is:

SCN.EPALYG.S2KC.GNPDEF

3.2.2.4 Cost Eiles

Eight files, called pVCSTX, where X is the scenario name, contain depreciation and investment cost by year by yard type for each scenario. Because only one scenario is modeled at a time, only one cost file is accessed at a time.

The first row of these cost files is yearly depreciation, assuming no inflation, by yard type. The next 31 rows are
yearly investment by yard type in 1980 dollars. The next 31 rows are yearly depreciation in nominal dollars by year, assuming 8 percent inflation and beginning in 1980. These were created by another model. The depreciation algorithm is defined in the model description. The columns in these files are yard types, where one is hump, two is flat classification, three is flat industrial and four is small industrial. The format of these files is 4 ($\mathrm{F} 10.6,1 \mathrm{X}$).

The names of these files are:

CN.EPALYG.S2KC.PVCSTX
where X is a scenario number from 1 to 8.
3.2.2.5 Net Income Forecasts

Net income forecasts, by firm, are contained in files called:

CN.EPALYG.S2KC.CASTXXX
where $X X X$ is the first three letters of the scenario number (ONE,TWO,THR, . . . EIG).

The first line of each file contains the year of the forecast. The next 40 lines contain firm-by-firm net income forecasts, before and after regulation, in millions. Following is another year indicator and then 40 lines (for 40 firms). These data files contain forecasts for 1980, 1985, 1990, 2000 and 2010. The correspondence of firm to firm number is given in Appendix B.

3.2.2.6 Key Einancial Parameters

Financial parameters, including the project time horizon, the corporate tax rate, the discount rate, the inflation rate, the construction year, investment tax credit rate, and the number of firms, are included in a file called

CN. EPAJHV.S2KC.MISC

Each line is a different parameter. The parameters, in order, and their respective format codes are shown in Table 3-2.

3.2.2.7 Historical Financial Data

The file identified as:
\$CN.EPAJHV.S2KC.BASE
contains basic historical financial data on firm-by-firm basis. Column 1 is net income, colume 2 is equity in undistributed earnings of affiliates, column 3 is net worth and column 4 is deferred taxes. The lines are on a firm-byyear basis, where line 1 contains 1973 data for firm 1 , line 2 contains 1974 data for firm 1 , and line 6 contains 1978 data for firm 1 . Line 7 contains 1973 financial data for firm 2.

Six-line (1973-1978) sets of financial data exist for each firm. There are 40 firms and so there are 240 lines of financial data in \$CN.EPAJHV.S2KC.BASE. The format of each line is 2(F10.3,F9.3).

TABLE 3-2

KEY EINANCIAL PARAMETERS: FILE EPAJHV.S2KC.MISC

DATA ITEMFORMAT CODE
Number of Firms I2
Corporate Tax Rate F3. 2
Investment Tax Credit F3. 2
Discount Rate F3. 2
Inflation Rate F3. 2
Construction Year I4
Project Time Horizon $I 2$

3.2.3 Algorithms

This section describes how the program determines its results. First, a general description of how the model operates and a detailed flow diagram are presented. Next, key algorithms are presented. These are cross-referenced to the approximate location in the program where they appear.

3.2.3.1 Model Operation

The cash flow model operates by reading from several data files as described in Section 3.2.2, performing various calculations on the data and then printing a detailed report which includes all the results. A more specific model description was provided in Section One of the software documentation, the model description.

A detailed flow diagram of the model is shown in figure 1. There are no complex loops in the model. Instead, the data are input and processed, and the results are printed.

The main result of the model, the ratio of Net Present Value of Future Cash Flows (DCF) to Net Worth (NW) for each firm, is determined through a series of equations which may be summarized in the following expression:
$N P V / N W=(D C F-P V I N V+P V D E P-P V O M-N W) / N W$
where:

- NPV is the net present value of future cash flows

Figure 1. Flow Diagram of Railroad Cashflow Mode!.

- DCE is the present value of future cash flows
- PVINV is the present value of investment in noise abatement equipment
- pVDEP is the present value of tax advantages accruing because of depreciation on the equipment
- PVOM is the present value of operating and maintenance expenses
- NW is the net worth of the firm

NPV is the net present value of future cash flows, calculated as the difference between the present value of the firm's future cash flows and the sum of the present value of the firm's net expenditures on abatement equipment and maintenance costs (after taxes) and the firm's net worth.

DCF is the present value of the firm's cash flows over the time hozizon of the project. Cash flow is defined in two ways.

In the historical cash flow approach, the firm's cash flow was assumed constant over time. Cash flow was based on 1973 to 1978 average cash flow (corrected to 1980 dollars) where cash flow was defined as follows:

```
    CF=NI + DEFT + EQ
```

where:

- CF is cash flow
- NI is net income
- DEFT is deferred taxes
- EQ is equity in earnings of affiliates.

```
~Depreciation was not added back into historical cash flow because it was assumed depreciation would be used to replace existing capital. The historical cash flow approach is the same as the one used in earlier railroad noise regulation background documents.
Because the baseline and derived forecasts provide only net income forecasts and not forecasts for the other accounts in cash flow, the forecasted cash flow method is used to convert net income to cash flows. For the two forecasted data sets, baseline and derived forecast, net income is converted to cash flows as follows:
\[
\mathrm{CF}=\mathrm{NI} \cdot \frac{\mathrm{AVGCF}_{73-78}}{\overline{\mathrm{AVGNI}} 73-78}
\]
```


where:

```
- CF is cash flow
- NI is firm net income from the forecast
- AVGCF73-78 is average cash flow over the 1973 to 1978 period
- AVGNI73-78 is average net income over the 1973 to 1978 period
This algorithm appears near line 170 of CASHFLOW.
CF (cash flow) is derived by multiplying NI (net income) by the average ratio of cash flow to net income over the historical period. Since the components of cash flow other than NI are not available, multiplying NI by the ratio of CF to NI was chosen as an appropriate method of converting NI to CF.
```

Net income forecasts were provided by another model for the years 1980, 1985, 1990, 2000 and 2010. Forecasts for years between the forecasted years are internally generated using linear interpolation. The general formula for this innear interpolation is:

$$
N I_{T 2}=\frac{N I_{T 3}-N I_{T 1}}{T 3-T 1} \times(T 2-T 1)+N I_{T 1}
$$

where:

- NI is net income
- T3 is the later forecast year provided in the data set (e.g., 1990)
- T2 is the year of the net income forecast to be created by linear interpolation
- T1 is the earlier forecast year provided on the data set (e.g., 1985).
- NIT means net income in period T

This linear interpolation takes place near line 135.

Present value of the firm's future cash flows was determined according to the formula

$$
D C F=\sum_{t=0}^{L I F E-1} \frac{\left(C F_{t}\right)(1+I N F L A T I O N)^{t}}{(1+D I S C O U N T)^{t}}
$$

where:

- DCF is the present value of future cash flows
- LIFE is the time horizon of the project
- INFLATION is the assumed rate of inflation
- DISCOUNT is the opportunity cost of capital to therailroad
- CF_{t} is the cash flow in period t. In the historicalcase, CF_{t} was equal to the 1973-1978 average cashflow expressed in 1980 dollars. In the baselineforecast, CF_{t} is equal to the firm projected cashflow for that year. In the post-regulatory derivedforecast, CF_{t} is the post-compliance cash flow forthat year derived from the projections of net incomeyielded by the profit-maximization model and thebaseline forecast. Under the scenario of no regula-tion, the baseline forecast cash flow wild equal cashflows calculated using the profit-maximizationderived forecast
This algorithm appears near line 170.gVINV is the present value of investment on abatementequipment, defined as:

where:
- $\cos ^{2} \mathrm{~T}_{j}$ is the cost of abatement item j
ITC is the federal investment tax credit, assumed tobe taken in the year the investment is made
Calculated near inne 182.
PVDEP is the present value of depreciation, assumed t
be straight-line. Because depreciation is not a cashoutflow, but is tax deductible, it adds to the cash flow of3-13
the firm. Thus, the tax savings accruing because of depreciation on abatement equipment were added back to the present value of the firm's cash flow according to the formula:

PVDEP $=$

where:

- PVDEP is the present value of depreciation expenses
- Tj is the service life of item j
- C_{j} is the cost of each of i items of abatement equipment. C_{j} is assumed to be the cost of each item in the year it is purchased until the year the item is scheduled to wear out. Service lives vary between 10 years for local sound barriers for idiling locomotives to an infinite period for land purchases. After the service iffe is over, C_{j} is multiplied by one plus the inflation rate raised to the power of the service life. At the end of the replacement item's service life, the cost of the replacement item is inflated as above to obtain the newest item's cost. This process is repeated as often as necessary. For example, assuming a 25 -year time horizon, an item with a lo-year service life must be purchased three times -- at the beginning of the project, in the lith year of the project and in the 21st year of the project. If the project begins in 1980, the item's cost will be in 1980 dollars for 1980-1989, 1990 dollars for 1990-1999, and 2000 dollars for 2000-2004. This inflation of each item's cost at the end of its service life reflects the fact that depreciation is calculated as a proportion of purchase cost, not replacement cost.
- TIME is the number of years after 1980 investments are made (TIME = Investment year - 1980).

Determined near line 180.

PVOM is the present value of operating and maintenance expenses of the abatement equipment. These expenses were assumed to be zero in this model, which was done near line 186.

NW is the net worth of the firm, also known as the stockholders' equity or net investment. The net worth used was a straight-ine extrapolation of 1973-1978 growth in net worth to 1980 , made according to the formula:

```
NW1980 = [(NW1978-NW1973)/5] x 2 + NW1978
```

where:

- NW_{1980} is 1980 net worth
- NW1978 is 1978 net worth
- NW1973 is 1973 net worth
- (NW1978-NW1973)/5 represents the average growth in net worth over the 1973-1978 period

Net worth is calculated near line 195.

Initial Investment costs

The model also calculates initial investment costs for each firm by multiplying the compliance cost per yard type by the number of each yard type owned by each firm. The formula is as follows:

Investment ${ }_{\text {Firm }}=\sum_{\text {Yard }}^{4} 1 \quad$ Cost $_{\text {Yard }}$. Number Yard
where:

- Investmentfirm is the initial investment by firms
- Costyard is the initial investment cost by yard type: hump, flat classification, flat industrial, and small industrial
- Numberyard is the number of each yard type owned by the railroad

This is determined near line 180.

3.3 Data Definftions

3.3.1 Introduction

This model processes much information using relatively few data names. There are essentially four types of data names used in the program. These are arrays, array indices, constants and variables. Arrays are matrices of one or two dimensions which store large blocks of similar data. Array indices tell what type of data is stored in a row or a column of an array. Constants are numerical constants which have been given alphabetic names to make the program more clear. Variables are numerical scratch pads whose value changes during computations.

This section has three more parts. Section 3.3.2
defines the arrays and array indices. Section 3.3.3 defines the constants. Section 3.3.4 defines the variables.

3.3.2 Arrays and Array Indices

Definitions of arrays and array indices are most easily conveyed in tabular form. Table 3-3 lists the arrays and describes their purpose.

Array markers are shown in Table 3-4. The array marker name, the array it corresponds to, its function and its value are all shown in this table.

TABLE 3-3 (cont.)

ARRAY	DEFINITION
PVCF	Present value of cash flows. Rows: firms, Columns: historical basis, baseline forecast basis, post-compliance forecast basis
PVOM	present value of operating and maintenance expenses
FRCST	First-year investment cost by firm
PVNW	1973-1978 net worth extrapolated to 1980, linearly
GNPDEF	Gross National product Deflators 1973-1978
INCOME	Post-compliance net income forecast, 1980-2010, by firm, by year
BASINC	Baseline forecast net income forecast 19802010, by firm, by year
ANSWER	Columns: Net present value of future cash flows, historical basis before and after compliance, baseline forecast before and after compliance, post-compliance forecast after compliance. Rows: Firms

TABLE 3-4
ARRAY MARKERS

ARRAY MARKER NAME	ARRAY IT MARKS	VALUE	COLUMN FUNCTION
NW	Base	1	Net worth
DEFT	Base	2	Deferred taxes
NI	Base	3	Net income
EQ	Base	4	Equity in earnings of affliates
AVGCF	Base	5	Average cash flow 1973-1978
AVGN I	Base	6	Average net income 1973-1978
B73	Several	1	Year 1973
874	"	2	Year 1974
B75	"	3	Year 1975
B76	1	4	Year 1976
B77	"	5	Year 1977
B78	"	6	Year 1978
B79	"	7	Year 1979
B80	*	8	Year 1980
HISTNO	Answer	1	Historical basis: no compliance
HISTO	"	2	Historical basis: post-compliance
BASENO	"	3	Baseline forecast: no compliance
BASEO	"	4	Baseline forecast: post-compliance
FORCSO	"	5	Post-compliance forecast

T'ABLE 3-4 (cont.)

3.3.3 Constants

Constants maintain the same value throughout the prom gram and are usually key parameters that one wants the ability to easily change. Table 3-5 defines the constants used in this program.

TABLE 3-5
DEFINITION OF CONSTANTS

NAME	FUNCTION
FIRMS	Number of railroad firms analyzed
tax	Corporate tax rate
ITG	Investment tax credit
DISCNT	Discount rate
INFLAT	Inflation rate
TIME	Year inftial costs are incurred
NUTIME	Converts year initial costs are incurred to a counter which is used in the addition of investment costs. Equal to TIME-1979.
JKADJ	An exponent used to inflate investment costs. Equal to NUTIME + 1.
NUMBER	Number of sets of net income forecasts to be read in; should never be changed unless new sets of forecasts are made

\bigcirc	3.3.4 Variables	
	Variables change value throughout the program.	
1	Table	ables used and their function.
$1 \times$		TABLE 3-6
	DEFINITION OF VARIABLES	
	NAME	FUNCTION
	PAGE	Stores number of pages to print page number as heading
+	COUNT	Counts lines to determine when a page should be ejected
1	DIFYER	Number of years between individual net income forecasts
	EN	Dummy variable
\bigcirc	XDUM1	Dummy variable
,	LOWYER	Lower year in set of net income forecasts to be used to interpolate other net income forecasts ${ }^{\text {a }}$
!	HIYEAR	Higher year in set of net income forecasts to be used to interpolate other net income forecastsa
1	INDYER	First year of net income forecast in set internally generated by interpolation
1	IHIYER	Last year of net income forecast set internaliy generated by interpolation
	INCSML	Value of post-compliance net income forecast in INDYER (lower year)
1	INCBIG	Value of post-compliance net income forecast in IHIYER (higher year)
9	BASSML	Value of baseline forecast net income in INDYER (lower year)

```
TABCE 3-6 (cont.)
```

NAME	FUNCTION
INCGRO	Iinear growth rate of postcompliance forecast net income between INDYER and IHIYER
BASGRO	Linear growth rate of baseline forecast net income between INDYER and IHIYER
CHANGE	Change in ret present value of future cash flow before and after regulation, historical basis
CHNG 1	Change in net present value of future cash flows before and after regulation, derived forecast basis
IYEARD	Converts numerical year value to an array index 1980=1,1981* 2, . . .
INUMB	Counts number of sets of net income interpolations to be made
IDUM	Dummy variable
XNWGRO	Linear growth in firm net income, 1973-1978
TOTCST	Total first year investment costs, 211 firms
IFIRM	Firm number; used in DO-LOOP
IYEAR	Year; used in DO-LOOP
a Net income forecasts for the years 1980, 1985, 1990, 2000 and 2010 are generated by another model and are available in the data files. Forecasts not in the data file	
lation. BASSML, income	INDYER, IHIYER, INCSML, INCBIG, are all used to generate net

3.4 Annotated Listing of the Program

A fully commented listing of CASHFLON is presented below.

1.	C EASHFLOW
2.	C RAILROAD CaSh flow monel
3.	C calculates net fresent value of future cash flows
4.	C FOF Fiallfoali firms anli other lata, SUCH AS
5.	C initial investment costs
6.	C AUTHOR: STEWART KAGAN, ENERGY FEESOLKEES COMFANY
7.	C FROGRAM REQUIRES IIATA FFOM SEUERAL INPUT FILES
8.	C this data includes a yard inventory for each firm
9.	C HISTORIACL FINANCIAL DATA ON EACH FIKM, FROJECTIONS
10.	C OF NET INCOME FOR EACH FIRH OUER AN INLIETERMINATE
11.	C TIME HOFIZON, InUESTMENT COSTS EY YARD TYFEE
12.	C THE GNF DEFLATOR FOR 1973-1980
13.	C TO COFRECT ALL NOMINAL DOLLAK FIGURES TO 1980 SOLLARS
14.	C ANI A File containing key firameters such
15.	C as tax rates, discount fate, inflation fate, number of firms
16.	C TIMING OF INUESTMENT, TIME HORIZON OF STULIY
17.	C declare arikays
18.	c gase financial inata. includes: firm net income, earnimgs ffom
19.	C EQUITY IN AFFILIATES, NET WORTH, deferren taxes, average
20.	C CASH FLOW, AUEFAGE NET INCOME (1973-78)
21.	REAL HASE ($50,7,8$)
22.	INTEGER NW, DEFT,NI, EQ,AUGCF,AUGNI, E79, E30
23.	INTEGER HISTNO,HISTO, EASENO, EASEO,FORESU,FIFIMS,LIFE,TIME
24.	integer fage, count
25.	C UARIARLES NEEDED TO FORECAST NET INCOME
25.	INTEGER IYEAR゙(15)
27.	INTEGER IIFYEF, FN, LOWYER, HIYEAR, NUMEER, INIYER, IHIYER
28.	REAL INCSMLIINCEIG,RASEIG, EASSML, IMCGFO, EASGRO
29.	C SO FIRMS, E YARI TYfES-YDINU IS YARDI INUENTOKY
30.	INTEGER YDINU (SO,5)
31.	C YARD TYfES- INDICES FOR ARRAYS
32.	INTEGER HUMF,FLTCLS,FLTIND, SMLINI
33.	Integer icaunt
34.	C these are years - mafkers for arkays such as the storage area for
35.	C HISTOFICAL DATA
36.	
37.	C gelow are the three arkiys for storage of the fatios
38.	C OF NET PRESENT UALUE OF FUTUEE CASH FLOWS TO NET WORTH

$$
3-26
$$

```
        79. SO FORMAT(F3,2)
        80.
        01.
        82.
        &3.
        84.
        85.
        86.
        87.
        88.
        89.
        90.
        91.
        92.
        93.
        94.
        95.
        9%,
        97.
        98.
        100.
        101.
        102.
        103.
        104.
        105.
        106.
        107.
        108.
        109.
        110.
        111.
        112.
    :13.
    114.
    115.
    116.
    117.
        READ (21,60) INFLAT
        READ (21,75) TIME
        75 FORMAT(14)
        FEAD(21,10) LIFE
                FEAL (3,85) XIUM1,XIUH2,XIUMS, XIUM4
    C INITIAL INUESTMENT EY YARLI TYFE
            NO 30 IYF=1,31
        C YEARLY INUESTMENT BY YARD TYFEE
    BO READ (3,BS) (YICST(IYR,IYAFD),IYARD=HUMF,SMLINLI)
        DO 93 IYfi=1,31
    C yearly deffeciation by yarb tyfe
    B3 READ(3,85) (YHINEF(IYR,IYARIG),IYAEI=HUMF,SMLINGI)
    85 FORMAT (4(F10.3,1X))
    C YARLI INUENTORY
                IO S9 IFIKM#1,FIKMS
    E9 REALI(1,9000) IDUM,(YDINU(IFIFM,IYAFD),IYARIIHUMF,SMLING)
    8900 FOFMMT(2X,IN,4(2X,13)
    C NOW REAII IN ILASE FINANGIAL DATA: (1973-1979) DATA
                IO 9% I=1,FIRMS
                00 95 J=1, B78
    95 REAG (22,100) EASE(I,J,NI),BASE(I,J,EQ),FASE(I,J,NW),
        CBASE(I,J+HEFT)
    100 FORMAT (F10.3,F9,3,F10.3.F9,3)
    C COMFLIANCE COSTS
    C NET INCOME FORECAST FOR THIS SCENARIO
    C NUMBER TELLS HOW MANY YEARS OF INCOME FORECASTS TO READ IN
                    NUMEEF=5
                            DO 118 {aI,NUMBER
        C IYEAR: YEAR OF INCOME FOREGAST; FM: IUMMY VARIAELE
            FEAD (24,115) IYEAR(I),FN
    115 FORMAT (IA,2X,I2)
    C THE NET INCOME FDREGASTS ALWAYS CONTAIN FORECASTS FOR FORTY FIRMS
    C THEREFORE, EUEN IF WE ARE LDOKING AT ONLY TWO FIEMS, WE MUST
    C READ IN DATA FOR AO FIFMS. THEREFORE , SET ARGIAY IMIEX EELOW
    6 TO 40, NOT THE NUMBER OF FIRMS
            $0 118 J=1,40
    C IYEARD: ADJUSTS YEAF OF FORECAST TO AN AR'KAY INDEX
```

 118. C FOR EXAKFLE, 1980 EECOMES 1, THE FIRST ENTFY IN THE ARFAY
 119. IYEAKD=IYEAR(I)-1979
 120. 118 READ (24,130) EASINC(J,IYEARII),INCOME(J,IYEAFIO)
 121. 130 FORMAT(2(F10.5,2X))
 122. C INFLATION RATE 1973-78
 123. DO 142 I=1.FSO
 124. 142 REAI (2,145) GNFDEF(I)
 125. 145 FORMMT (1F5.1)
 126. C CALCULATIONS EEGIN HERE
 127. C IN THIS SECTION INIIUIDUAL NET INCOME FORECASTS
 129. C ARE GENERATED UNDER THE GASELINE AND MONIFIEII BASELINE
 129. C FORECASTS
 INUMEANUMEER-1
 DO 210 I=1,INUMB
 LOWYEK=IYEAR(1)-1979
 HIYEAR=IYEAR((I+1))-1979
 C INDYER IS THE INLEX YEAR
 INDYER=LOWYER+1
 C IHIYER IS THE OBJECT YEAR
 IHIYER=HIYEAR-1
 SO 210 J=1,FIFMS
 C FIFST CALCULATE CASH FLOW AUERAGE (1973-70)
 C CORFELT FOR INFLATION, AUERAGE, THEN UPLIATE TO 1980
 C CALCULATE INDIUIGUAL EASELINE YEARS EY INTEFFOLATION
 GASSHL=SASINC(J,LOWYER)
 INCSML=INCOME(J,LOWYER')
 GASEIG=EASINC(J,HIYEEAR)
 INCBIG#INCOME(J,HIYEAR)
 EASGRO=(EASEIG-EASSML)/(HIYEAR-LOWYER)
 INCGRO=(INCEIG-INCSML)/(HIYEAR-LOWYER)
    ```
```

 148.
 149.
 150.
 151.
 152.
 153.
 154.
 155.
 156.
 157.
 158.
 159.
 160.
 161.
 152.
 163.
 164.
 165.
 166.
 167.
 168.
 169.
 170.
 171.
 172.
 173.
 174.
 175.
 176.
 177.
 178.
 179.
 I
 180.
 191.
 192.
 183.
 184.
 185.
 186.
 2B7.
    ```

149
150.
151.
152.

154 .
155.
156.
157.
158.
159.
160.
161.
152.
163.

164 .
165.
166.
167.
168.
169.
170.
171.
172.
73.
174.
75.
176.
177.
178.
179.

I
180.
181.
182.
183.
184.
186.
187.
```

 ICOUNT=1
 IO 210 II=INDYER,IHIYER
 INCOME (J,II)=INCSML +ICOUNT*INCGRO
 BASINC(J,II)=FASSML+(ICOUNT*EASGRO)
 210 ICOUNT=ICOUNT+1
 00 250 I=1,FIRMS
 C AUERAGE OUER SIX YEARS
 &ASE(I, E73,AVGCF)=0
 BASE(I, B7J,AUGNI)=0
 00 250 J=1,878
 BASE(I, 873,AVGCF)= EASE(I,E73,AVGCF)+(BASE(I,J,NI)+EASE(I,J,
 CDEFT)-EASE(I,J,EQ))*(GNFDEF(RGO)/GNFDEF(J))/ETB
 250 BASE(I,E73,AVGNI)=EASE(I,E7J,AVGNI)+EASE(I,J,NI)*GNFLIEF(EGO)
 CGNFIEF(J)/B7S
 C FINR CASH FLOW OF BASELINE ANL FORECAST NET INCOME
 NO 400 Ia\,FIRMS
 FUCF (I, EASELI)=0
 FVCF(I,HIST)=0
 PUCF (I,FDRCST)=0
 C frEESENT Yalue of FuTURE CASH flows
 DO 280 J=1.LIFE
 IF((BASE(I,B73,AVGNI)).NE.0.0) GO TO 250
 FUCF(I,EASELI)=FUCF(I,BASELI)+BASINC(I,J)
 C*(i(1.+INFLAT)**(J-1))/((1.+DISCNT)**(J-1)))
 PUCF(I,FORCST)=PUCF(I,FORCST)+INCOME(I,J)
 C*(((1.+INFLAT)**(J-1))/((1.+DISCNT)**(J-1)))
 GO TO 28O
 250 FVCF(I,HASELI)=FUCF(I,EASELI)+EASINC(I,J)
 C*(BASE(I, &73,AUGCF)/BASE(I,E7ड,AVGNI))
 C*(((1.+INFLAT)**(J-1)):((1,+\squareISCNT)**(J-1)))
 PUCF(I,FORCST)=FUCF(I,FORCST)+INCOME(I, J)*(((1, +INFLAT)
 C**(J-1))/((1,+[IISCNT)**(J-1)))*EASE(1,R73,AVGCF)/GASE(I, ETJ,AVG!
 C)
 230 PUCF(I,HIST)=BASE{I,B73,AUGCF)*((1, +INFLAT)**(J-1))/((1.+IIISC
 CNT)**(J-1))+PUCF(I,HIST)
 C INITIAL INUESTMENT COSTS GY FIFM
 C CALCULATEII EY MULTIFLYING FIEM YARD INDENTORY
 C EY INITIAL INUESTMENT COST FER YARI TYFEE
 DO 299 IYARGIHUMF,SMLIND
 FFCST(I)=YDINU(I,IYARII)*YICST(I,IYARII) + FFICST(I)
    ```
```

188. 299 CONTINUE
189. C FNESENT UALUE OF INUESTMENT,NEFRECIATION AND OFERATING COSTS
190. C NUTIME: NUMEER OF YEARS 1FTER 1979 INUESTMENTS ARE MANE
191. NUTIME=TIME-1979
DO 300 JK=NUTIME,LIFE
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.

2 1 0 .
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
22S.
227.
C JKADJ: NUMEER OF YEARS AFTEF 1980 INUEETMENTS ARE MANE
C JKAIIJ IS USED AS AN EXFONENT TO INFLATE AND IIISCOUNT VALUES
C OUER TIME
JKNIIJ:JK_NUTIME+1
DO 300 IYAKI=HUMF,SMLINI
C fRESENT VALUE OF INUESTMENTS OUER TIME
C INUESTMENT COSTS ARE [IISCOUNTEI, ITC ISI NETTED OUT
PUINU(I)=FUINU(I)+YIINU(I,IYARD)*YDCST(JKAIJ,IYAFII)*
C(1.-ITC)
C*(((1.+INFLAT)**(JK-1)))/((1,+ロISCNT)**(JK-1))
C DEPRECIATION IS STKAIGHT-LINE AND IS INFUT
C PrESENT valuE of tax Savings accruing because of nefreciation
PU|EF'(I) =PUDEF(I)+YDINU(I,IYARI)*YDDEFF(JNAIJ,IYARI)*TAX
C*((1.+INFLAT)**(NUTIME-1))/{(1.+\squareISCNT)**(JK-1))
PUOM(I)=0.0
300 CONTINUE
4OO CONTINUE
C NOW CREATE OUTFUT ARRAY
DO S00 I=1,FINMS
C EXTKAFOLATE 1973-1978 CHANGES IN NET WORTH TO 19B0
C EY STRAIGHT-LINE INTEFFOLATION
XNWGRO=(EASE(I,E78,NW)-SASE(I,B73,NW))/(87B-E73)
BASE(I,E80,NW)=BASE(I,B73,NW) +XNWGRO*(B80-B78)
ANSWER(I,HISTNO)=FUCF (I,HIST)-EASE(I,E8O,NW)
ANSWER(I,HISTO)=ANSWER(I,HISTNO)-FUINU(I)+FUDEF(I)-FVUM(I)
ANSWER(I, BASENO)=FUCF(I,BASELI)-EASE(I,EBO,NW)
ANSWER(I,EASEO)= ANSWER(I,EASENO)-FUINU(I)+FUDEF(I)-FUOM(I)
SOO ANSWEF(I,FDRCSO)=FUCF(I,FORCST)-FUINU(I)+FVIIEF(I)-FNOM(I)-EAS
C(I,B8O,NW)
C OUTFUT SECTION
C INUTFUT SECTION
WRITE(6,505)
SOS FORMAT('O', 'NUMBER OF FIFMS', SX,'TIME HORIZON OF FROJECT
C,5X,'IMFLEMENTATION YEAR')
WFITE (6,510) FIRMS, LIFE,TIME

```
\begin{tabular}{|c|c|c|}
\hline 228. & 510 & \begin{tabular}{l}
FORMAT('g',7X,12,25X,I2,25x,14) \\
WRITE (G,SIS) TAX,ITC,DISCNT,INFLAT
\end{tabular} \\
\hline 230. & 515 & FORMATS'O', 'TAX FIATE:',1X,F6,3,3X, 'ITC:',1X, \\
\hline 231. & & CFS.3, Sx, 'gISCOUNT FATE:',IX,F6.3,3X, \\
\hline 232. & & C'INFLATION RATE:', 1X,F6.3) \\
\hline 233. & & WRITE ( \(5,5 \geq 0\) ) \\
\hline 234. & 520 & FORMAT('I',SOX,'INTERMEIIATE RESULTS') \\
\hline 235. & & WNITE (6,575) \\
\hline 236. & & WRITE (6,525) \\
\hline 237. & 525 &  \\
\hline 239. & & C.6x, 'fresent ualue', 18 x , 'fresent value of Cash flow') \\
\hline 239. & & WRITE (6,530) \\
\hline 240. & 530 & FORMATC'E',13X,'OF INUESTMENT',4X,'OF OFERATING', \\
\hline 241. & & CJX, '0F [IEFFECIATION') \\
\hline 242. & & WRITE (S.E35) \\
\hline 243. & 535 &  \\
\hline 244. & &  \\
\hline 245. & & WFITE (6,540) \\
\hline 246. & \$40 &  \\
\hline 247. & & C13X,10('*'), 5x,8('*'),7X,8('*') ) \\
\hline 248. & & DO 550 \(=\) =1,FIKMS \\
\hline 249. & 550 & WFITE(S, 5SO) I,FUINU(I),FUOM(I),FUDEF(I),PUCF(I,HIST) \\
\hline 250. & & GIFUCF(I,EASELI), PUCF(I,FORCST) \\
\hline 251. & 560 & FORMAT ('0', \(4 \mathrm{X}, 12,4 \mathrm{CF12.3,6X,F12.3,7X,F12.3,13X}\), \\
\hline 252, & & CF12.3,4x,F12.3,2x,F12.3) \\
\hline 253. & & WFITE (6,565) \\
\hline 254. & S65 & FORMAT '1',3X,'1778 NET WORTH EXTRAF'OLATED TO 1980 \\
\hline 255. & & C, 'LOGARITHMICALLY') \\
\hline 256. & & WRITE (6,570) \\
\hline 257. & 570 & FORMAT('O', SX,'FIFM',1IX,'NET WORTH') \\
\hline 258. & & WRITE (6,573) \\
\hline 259. & 573 & FORMAT('s',21X,'(MILLIONS)') \\
\hline 260. & & WRITE (6,575) \\
\hline 251. & 575 & FORMAT ( \({ }^{\prime \prime}\) ') \\
\hline 262. & & DO SBO ImitFIEMS \\
\hline 263. & 580 & WRITE (6,585) I, EASE (I, E80 rNW) \\
\hline 264. & S85 & FORMAT ('s',6X,12,11x,F12.3) \\
\hline 265. & & FAGE=0 \\
\hline 266. & & COUNT=1 \\
\hline 267 . & & 00800 Imi,FIFMS \\
\hline
\end{tabular}
```

 268.
 269.
 270.
 271.
 272.
 273.
 274.
 275.
 s'
276.
277.
278.
279.
280.
281.
282.
253.
284.
285.
286.
297.
288.
289.
290.
291.
292.
293.
294.
2%S.
296.
297.
298.
299.
300.
301.
302.
303.
304.
30E.
306.
307.
FL
IF(I.EG.1) GO TO 590
IF (COUNT.LE.51) GO TO 645
COUNT=7
WRITE (6,600)
FORMAT('1')
FAGE=F'AGE+1
WRITE (6, 610) F'AGE
FORMAT ('0',42X,'NET F'RESENT UALUE OF FUTURE CASH FLOW anAlyE
C,34X,'F'AGE',IX,I2)
WRITE (0.620)
FORMAT('E',42X,44('*'))
WRITE (6,630)
FOKMAT('0',10X,'FIRM NAME',SIX,'HISTORICAL HVERAGE',
CBX,'EASELINE FORECAST',BX,'COMPLIANCE FORECAST')
WRITE (6,640)
FORMAT ('R',E3X,'(MILLIONS)',16X,'(MILLIONS)',1GX,'(MILLIONS
[")
A1=ANSWER(I,HISTNO)
A2=ANSWER(I,BASENO)
A3=ANSWER(I,HISTO)
A4=ANSWER(I,EASEO)
AS=ANSWER(I,FORCSO)
WRITE (6,650) I,A1,A2
FORMAT('0',1JK,I2,16X,'NFU OF FUTURE',9X,F10.3.16X,
CF10.3, 16X,'NOT AFPLICABLE')
WRITE (6,660)
FORMAT('S',3IX,'CASH FLOWM NO')
WRITE (6,570)
FOKMAT ('B',3IX,'COMPLIANCE')
WFITE (b,680) I,AB,A4,AS
FORMAT('0,,13X,I2,16X,'NFY OF FUTURE',9X,F10.3.16X,
CF10.3,15X,F10.3)
WRITE (6,690)
FORMAT('E',3IX,'CASH FLOW- WITH')
WRITE (6,700)
FOKMAT('R',31X, 'COMPLIANCE')
CHANGE=ANSWER(I,HISTNO)~ANSWER(I,HISTO)
CHNG1=ANSWER(I,RASENO)-ANSWER(I,EASEO)
WRITE (6,710) I, CHANGE,CHNGI
FOFMAT('O',13X,I2,16X,'CHANGE',16X,F10,3,16X,F10.3,16X,'NOT

```
```

 308.
 CICABLE')
 800 COUNT=COUNT+10
 C FFINT FAATIOS OF NET FRESENT UALUE OF FUTURE CASH FLOWS
 C TO NET WORTH, ROUNDED TO NEAREST HUNDREDTH
 DO 910 I=1,FIRMS
 IF((BASE(I,R8O,NW)).LE.0.0)GO TO 900
 HISKAT(I) =.005HANSWER(I,HISTO)/EASE(I, BSO,NW)
 FORRAT (I) =.OOS+ANSWEF(I,FOFCCSO)/EASE(I,FGO,NW)
 GASRAT(I):,OOS+ANSWER(I, RASEO)/EASE(I,RBO,NW)
 go TO 910
 HISRAT(I)=-95.9999
 BASFAT(I)=-99.9999
 FOFRAT(I)=-99.9909
 CONTINUE
 WRITE (6,920)
 FORMAT('I',2OX,'RATIO OF NFUFCF TO NET WORTH')
 WRITE (6,930)
 FORMAT('F',20X,29('*'))
 WRITE(6,940)
 FORMAT('O','FIRM',3X,'HISTORICAL',EX,'BASELINE',7X,
 C'FORECAST')
 WRITE(o,950)
 FOKMAT('B',4('*'),3x,10('*'),5x,a('*'),7x,8('*'))
 WRITE (6,960)
 FORMAT ('0')
 NO 990 I=1,FIRMS
 C SKIF MILWAUKEE(8) ANI FUCK ISLANII LINES(9)
 IF(I.EQ.B)GO TO 990
 IF(I.EQ.9)GO T0 990
 IF(HISRAT(I).EG.-99.9999)GO TO 970
 WRITE(S,1000) I,HISEAT(I), EASFGT(I),FORFAT(I)
 GO TO 990
 970 WFITE(6,990) I
 980 FORMAT('S',13,8X,3('*',14X))
 990 CONTINUE
 1000 FORMAT('B',I3,4X,4(F7.2,日X))
 C FRINT OUT FIFM GY FIFM INITIAL COSTS
 WRITE(6.1010)
 10:0 FOKMAT('1','FIKM',EX,'INITIAL COST')
 DO 1030 I=1,FIFMS
    ```
```

348.
349.
350.
351. C CALCULATE TOTAL INITIAL COST GY SCENARIO
352.
353. 1020 FORMAT('8.,13,5X,F9.3)
354.
355.
356.
357.
358.

35:.
IF(I.E0.8) GO TO 1030
IF(I,EQ.9) GO TO 1030
WRITE(b,1020)I,FRCST(I)
352. TOTCST:TOTCST+FFCST(I)
1030 CONTINUE
FOKMAT('8,,13,5X,F9.3)
C WFITE QUT TOTALS
WRITE(b,1040) TOTCST
1040 FORMAT('0','TOTAL',3X,F10.3)
10000 STOF
END

```

\subsection*{3.5 Verification and Test Procedures}

The cash flow model utilizes relatively simple algorithms. These were described in section 3.2.3. Because the algorithms are relatively simple, calculations may easily be checked using a hand calculator. Another feature of this model is that all intermediate results, such as the present value of the investment costs and extrapolated net worth values, are printed out. Using these intermediate results and a hand calculator one can easily verify the results.

Eecause the algorithms were verified in the course of developing the software, no specific test procedures can be suggested. Anyone wishing to verify the results can use the algorithms defined in Section 3.2.3, the data which are presented in Appendix \(A\), and should run the program.

If one wishes to modify this model by adding new algorithms, the best procedure to verify the new results is to reduce the number of firms in the data set and to reduce the time horizon of the project. This may be done by altering the first line of the \(\$ C N\).EPAJHV.s2KC.MISC file, which contains the number of firms, and by altering the seventh line of the file, which contains the time horizon of the project. Reducing the number of firms and the time horizon of the project reduces the complexity of the calculations the model performs. One should also print out the new results. With a small number of firms and a short time horizon, new results should be easily verifiable with a hand calculator.
\begin{tabular}{|c|c|c|c|c|}
\hline 1. & 89.929 & . 0 & . 1492.023 & . 0 \\
\hline \(2 \cdot\) & 65.948 & 29,711 & 1268.793 & 19.284 \\
\hline 3. & 55.626 & 3.591 & 1296.919 & -. 493 \\
\hline 4. & 55.096 & 5.931 & 1316.014 & -1.989 \\
\hline 5. & 75.289 & -17.551 & 1378.135 & 12.37 g \\
\hline 3. & 92.539 & . 221 & 1434.520 & 28.211 \\
\hline 7. & 31.805 & . 0 & 548.808 & . 0 \\
\hline 3. & 53.250 & 2.908 & 635.628 & 14.632 \\
\hline 9. & 23.085 & 1.008 & 658.709 & 1.217 \\
\hline 10. & 31.407 & 5.351 & 689.807 & 7.567 \\
\hline 11. & 85.113 & 3.135 & 733.566 & 1.745 \\
\hline 12. & 55.029 & 3.813 & 773.103 & -.052 \\
\hline 13. & 2. 587 & . 0 & 84.358 & . 0 \\
\hline 14. & 2.500 & . 0 & 80.031 & 1.769 \\
\hline 15. & 3.123 & . 0 & 83.55s & 4.378 \\
\hline 16. & 3.563 & . 0 & 89.436 & 3.093 \\
\hline 17. & 4.011 & 5.039 & 103.024 & 4.980 \\
\hline 13. & 3.750 & . 0 & 113.409 & 4.155 \\
\hline 19. & 6.159 & . 000 & . 000 & . 000 \\
\hline 20. & -. 873 & . 037 & . 0 & . 0 \\
\hline 21. & -13.529 & . 008 & . 0 & . 0 \\
\hline 22. & -22.927 & -. 289 & . 0 & . 0 \\
\hline 23. & -5.514 & . 0 & .0 & . 0 \\
\hline 24. & -.471 & . 070 & . 0 & .0 \\
\hline 25. & 30.656 & . 0 & 1541.390 & . 0 \\
\hline 25. & 82.560 & 6.201 & 1528.273 & 1,190 \\
\hline 27. & 52.591 & 2.872 & :658.383 & 7.032 \\
\hline 29. & 72.580 & 7.621 & 1732.937 & 2.847 \\
\hline 39. & 74.908 & 15.723 & 1876.233 & 1.359 \\
\hline 30. & 113.550 & 22.286 & 195\%. 16 & 1.900 \\
\hline 31. & 39.392 & . 0 & 508.844 & . .000 \\
\hline 32. & 89.700 & 55.899 & 559.214 & 15.578 \\
\hline 33. & 83.818 & 25.917 & 603.217 & -3.261 \\
\hline 34. & 99.171 & +0.484 & 651.701 & -9.397 \\
\hline 35. & 89.898 & 50.004 & 588.611 & 13.135 \\
\hline 35. & 68.865 & 36.306 & 778.846 & -2.253 \\
\hline 37. & 15.250 & . 000 & 30.502 & . .0 \\
\hline 38. & -.983 & 2.177 & 25.698 & -2.069 \\
\hline 39. & -16.323 & -2.078 & 9.375 & -4.985 \\
\hline 40. & 3.050 & . 000 & 12.425 & . 793 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & -. 450 & . 000 & 21.235 & -. 242 \\
\hline 42. & -15.910 & . 000 & 28.742 & -. 503 \\
\hline 43. & 3.405 & . 000 & 320.73 B & . 000 \\
\hline 44. & 11.402 & 12.301 & 343.340 & 1.757 \\
\hline \(44^{4 .}\) & -21.067 & -5.592 & さ21.227 & -4.332 \\
\hline 46. & -12.079 & 3.004 & 309.149 & . 000 \\
\hline 47. & -36.247 & 13.230 & 282.931 & 2.253 \\
\hline 48. & -65.157 & 10.895 & 203.525 & . 000 \\
\hline 49. & -14.980 & . 000 & 226.374 & . 000 \\
\hline 50. & -23.097 & . 117 & 202.810 & . 000 \\
\hline 51. & -31.153 & -. SSs & 171.644 & . 000 \\
\hline 52. & -25.047 & -. 040 & 146.597 & . 000 \\
\hline 53. & -34.834 & -1.195 & 111.768 & . 000 \\
\hline 54. & -21.152 & . 331 & 81.790 & . 000 \\
\hline 55. & . 000 & . 000 & . 000 & . 000 \\
\hline 56. & . 000 & . 000 & . 000 & . 000 \\
\hline 57. & . 000 & . 000 & . 000 & . 000 \\
\hline 58. & . 000 & . 000 & . 000 & . 000 \\
\hline 59. & . 000 & . 000 & . 000 & . 000 \\
\hline 60. & . 000 & . 000 & . 000 & . 000 \\
\hline 61. & -. 067 & -2.834 & 50.096 & . 000 \\
\hline 62. & -.102 & -3.342 & 71.991 & - 50 \\
\hline 63. & 3.308 & 2.005 & 73.811 & . 331 \\
\hline 64. & 2.523 & . 542 & 74.353 & 1.100 \\
\hline 55. & 5.222 & 2.146 & 75.425 & . 115 \\
\hline 66. & 3.375 & 5.765 & 79.099 & -. 097 \\
\hline 67. & -418.847 & 9.575 & 211.153 & . 000 \\
\hline 68. & -632.352 & -1.472 & -264.343 & . 000 \\
\hline 69. & -681.484 & 7.535 & -188.568 & . 000 \\
\hline 70. & -418.847 & 9.576 & 211.153
-254.343 & . 0000 \\
\hline 71. & -632.352 & -1.472 & -264.343
-158.558 & .000
.000 \\
\hline 72. & -691.454 & 7.885 & -158.5.58 & . 0000 \\
\hline 73. & 2.410 & . 000 & 43.840 & . 531 \\
\hline 74. & . 990 & . 007 & 45.040 & .331
-.341 \\
\hline 75. & -1.597 & -.234 & 4.4.361 & -.
-.945 \\
\hline 75. & -3.576 & -. 003 & 40.785 & -.915
.000 \\
\hline 77. & -12.028 & .008
-.001 & 28.757 & .000 \\
\hline 78. & -11.668 & -. 001 & 17.089
904.125 & . .000 \\
\hline 79. & 18.051 & .000
3.823 & 204.125
180.449 & 1.334 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 81. & 13.947 & -. 263 & 185.157 & 3.525 \\
\hline 82. & 16.503 & . 395 & 194.423 & 2.725 \\
\hline 83. & 19.493 & .432 & 205.247 & 1.922 \\
\hline 84. & 24.501 & . 578 & 220.598 & 1.531 \\
\hline 85. & -2.525 & . 000 & 52.572 & . 000 \\
\hline 86. & -2.987 & -4.154 & 61.070 & . 000 \\
\hline 87. & -11.717 & -. 099 & 44.765 & . 256 \\
\hline 89. & -1.717 & . 027 & 43.049 & -. 0.45 \\
\hline 89. & 2.259 & . 081 & 45.308 & -. 005 \\
\hline 90. & 3.103 & . 107 & 48.411 & -. 40.4 \\
\hline 91. & 11.141 & . 000 & 107.577 & . 000 \\
\hline 92. & 11.562 & . 000 & 99.534 & 1.520 \\
\hline 93. & 3.670 & . 000 & 88.800 & 3.034 \\
\hline 94. & 2.858 & . 000 & 85.550 & 2.379 \\
\hline 95. & -2.851 & . 000 & 77.797 & 2.747 \\
\hline 96. & 6. 322 & . 000 & 93.519 & . 000 \\
\hline 97. & 11.161 & . 000 & 73.650 & . 000 \\
\hline 98. & 13.055 & . 000 & 71.134 & 1.265 \\
\hline 99. & 4.093 & . 000 & 58.292 & 1.195 \\
\hline 00. & 9.298 & . 000 & 71.580 & 8.131 \\
\hline 01. & 9.750 & . 000 & 75.529 & 3.962 \\
\hline 02. & 15.038 & . 000 & 95.05s & 2.275 \\
\hline 03. & 7.214 & . 000 & 79,483 & . 000 \\
\hline 104. & 3.153 & .126 & 83,793 & . 500 \\
\hline 105. & 6.801 & . 218 & 90.594 & . 773 \\
\hline 106. & 2.810 & . 132 & 93.404 & . 678 \\
\hline 107. & 6.532 & -. 383 & 99.936 & 2.054 \\
\hline 108. & 13.124 & . 382 & 113.060 & 3.153 \\
\hline 109. & -.392 & . 000 & 33.155 & . 000 \\
\hline 110. & -3.349 & -. 008 & 29.805 & -. 034 \\
\hline 111. & 1.913 & . 000 & 31.811 & -. 077 \\
\hline 112. & . 542 & . 000 & 32.353 & -. 034 \\
\hline 113. & 2.145 & . 000 & 34.499 & -. 034 \\
\hline 114. & 5.764 & . 000 & 40.253 & . 000 \\
\hline 115. & -10.979 & . 000 & -229.880 & . 000 \\
\hline 115. & -7.939 & . 066 & -233.047 & . 000 \\
\hline 117. & -7.244 & . 061 & -240.291 & . 000 \\
\hline 118. & -1.738 & . 195 & -240.102 & . 000 \\
\hline 119. & 1.711 & . 102 & 21.711 & . 000 \\
\hline 120. & 7.921 & . 179 & 229.352 & . 000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 121. & 45.132 & . 000 & & \\
\hline 122. & 29.474 & . 589 & S70.803 & .000
.000 \\
\hline 123. & 1.080 & 2.535 & 565.357 & 4.112 \\
\hline 124. & 15.227 & 2.024 & \$76.830 & 4.112
-.245 \\
\hline 125. & 3.359 & 1.655 & 692.559 & -. 1.783 \\
\hline 125. & -1.972 & -.50s & S82.190 & 1.700 \\
\hline 127. & -. 253 & . 000 & 138.510 & . 000 \\
\hline 128. & 2.803 & -. 249 & & . 000 \\
\hline 129. & 1.327 & . .019 & 114.526
115.771 & .730
.200 \\
\hline 130. & 2.433 & -. 159 & 118.209 & .200 \\
\hline 131. & 9.390 & . 153 & 124.055 & 4.375 \\
\hline 132. & 14.382 & . 135 & 133.659 & 4.494 \\
\hline 133. & -77.387 & . 000 & +.000 & \(153.9+2\) \\
\hline 134. & -109.727 & . 000 & . 000 & 140.917 \\
\hline 135. & -128.5S0 & . 000 & .000 & 120.371 \\
\hline 135. & -120.414 & . 000 & . 000 & 129.3018
106.380 \\
\hline 137. & -121.550 & . 000 & . 000 & 102.584 \\
\hline 138. & -154.779 & . 000 & . 000 & 55.50\% \\
\hline 139. & 37.007 & . 000 & 506.722 & J. 000 \\
\hline 140. & 25.501 & . 340 & 507.179 & 11.355 \\
\hline 141. & 23.887 & -. 131 & 515.327 & 11.355
8.025 \\
\hline 142. & 27.146 & -. 873 & 529.123 & -. 295 \\
\hline 143. & 20.272 & 1.012 & 538.009 & -. 295 \\
\hline 144. & -31.198 & . 599 & 506.811 & -.003 \\
\hline 145. & 25.505 & . 000 & 406.816 & .04
.000 \\
\hline 146. & 49.722 & 10.293 & 432.898 & 4.275 \\
\hline 147. & 46.715 & -13.432 & 455.842 & -. 4.45 \\
\hline 148. & 68.695 & 14.895 & 532.717 & 9.481 \\
\hline 149. & 108.882 & -. 449 & \$19.915 & 12.293 \\
\hline 150. & 101.139 & 2.534 & 587.984 & 13.790 \\
\hline 15. & -8.195 & . 000 & -13.04a & . 000 \\
\hline 152. & -2.550 & . 437 & -14.197 & . 000 \\
\hline 53. & -5.310 & . 397 & -20.85 5 & . 000 \\
\hline 54. & -5.756 & .425 & -27.930 & . 000 \\
\hline 55. & -5.572 & . 653 & - 4.9112 & . 000 \\
\hline 56. & 2.405 & . 524 & -33.916 & . 000 \\
\hline 57. & 68.790 & . 000 & 1170.422 & . 000 \\
\hline 58. & 113.211 & 8.671 & 970.477 & 27.844 \\
\hline 59. & 87.505 & -. 450 & 1006.478 & 28.235 \\
\hline 60. & 131.522 & .170 & 1084.671 & 3.975 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 161. & 103.435 & -9.173 & 1132.050 & \[
15.099
\] \\
\hline 152. & 167.597 & 21.168 & 1238.139 & -13.339 \\
\hline 163. & 10.478 & . 000 & 215.221 & . 000 \\
\hline 164. & 11.939 & -. 150 & 160.603 & -. 500 \\
\hline 165. & 6.179 & -.995 & 150.094 & -1.25 \\
\hline 166. & 6.772 & -1.539 & 153.409 & -1.275 \\
\hline 167. & 7.154 & -. 347 & 156.311 & -1. -.830 \\
\hline 159. & 7.707 & -1.141 & 159.031 & -.830 \\
\hline 169. & 11.454 & . 000 & 254.178 & . 940 \\
\hline 170. & 15.322 & 1.554 & 215.616 & 1.940 \\
\hline 171. & 9.370 & -. 300 & 217.697 & 1.300 \\
\hline 172. & 11.956 & 1.143
1.32 & 134.044 & . .000 \\
\hline 173. & 16.716 & 1.432 & 134.047 & . 000 \\
\hline 174. & 20.617 & - & -5. 971 & . 000 \\
\hline 175. & 38.997 & . 000 & 352.971 & 9.741 \\
\hline 175. & 34.537 & . 709 & 272.754 & 7.884 \\
\hline 177. & 26.615 & . 303 & 293.571 & -. 0.048 \\
\hline 178. & 38.982 & . 518 & 293.290 & 14.439 \\
\hline 179. & 30.780 & -.021
.032 & 290.932 & 2.492 \\
\hline 180. & 51.998 & . 000 & 964.873 & . .000 \\
\hline 181. & 76.375 & 57.000 & 1041.539 & 5.88 .4 \\
\hline 182. & 79.214 & 57.735 & 1064.541 & 2.562 \\
\hline 183. & 47.336 & 17.735 & 1125.939 & 1.053 \\
\hline 184. & 85.373 & 29.730 & 1193.219 & -. 9.91 \\
\hline 185. & 103.037 & 27.730 & 1199.632 & -1.893 \\
\hline 186. & 69.354 & -5.986 & 1129.632 & -. .000 \\
\hline 187. & 17.620 & - 00 & 149.931 & 3.000 \\
\hline 189. & 14.307 & - 253 & 145.931 & 3. 3.00 \\
\hline 189. & 10.413 & . 261 & 150.394 & 2.200 \\
\hline 190. & 16.201 & . 203 & 159.000 & 2.500 \\
\hline 191. & 18.802 & - 144 & 158.054 & 2.755 \\
\hline 192. & 23.323 & . 291 & 179.730 & 4.000 \\
\hline 193. & 81,759 & . 000 & 1553.293 & . 17.000 \\
\hline 194. & 83.232 & -1.962 & 1399.511 & 17.095 \\
\hline 195. & 52.627 & 3.669 & 1437.965 & 9.535 \\
\hline 196. & 81.263 & 24.053 & 1542.851 & -2. 579 \\
\hline 197. & 79.586 & -2.699 & 1598.383 & 21.791 \\
\hline 198. & 49.369 & -5.590 & 1555.069 & 1.835 \\
\hline 199. & 125.724 & . 000 & 1504.052 & 30.143 \\
\hline 200. & 99.171 & -1.257 & 1214.037 & 30.143 \\
\hline
\end{tabular}


CN.EPALYG.S2KC. CAST8ONE
(For illustrative purposes onlynot actual data.)
\begin{tabular}{|c|c|c|}
\hline 1. & 198050 & \\
\hline 2. & 107.49957 & 107.49995 \\
\hline 3. & 51.43221 & ¢1.43245 \\
\hline 4. & 22.70284 & 22.70234 \\
\hline 5. & 0.67061 & 0.57061 \\
\hline 6. & 90.55872 & 98.55910 \\
\hline 7. & 46.79529 & 46.79567 \\
\hline 8. & -3.72370 & -3.72331 \\
\hline 7. & -41.18745 & -41.13745 \\
\hline 10. & -10.02529 & -10.02515 \\
\hline 11. & 1.44813 & 1.44816 \\
\hline 12. & 2.89137 & 2.37140 \\
\hline 13. & -440.53784 & - +40.53554 \\
\hline 14. & -6.94858 & -3.94857 \\
\hline 15. & 29.22343 & 29.223-9 \\
\hline 15. & 2.51902 & 2.51903 \\
\hline 17. & 10.23597 & 10.23599 \\
\hline 18. & 19.05380 & 19.06381 \\
\hline 19. & 13.80169 & 13.80167 \\
\hline 20. & 4.86256 & 4.86239 \\
\hline 21. & 7.39483 & 7.39485 \\
\hline 22. & 7.56918 & 7.5685 \\
\hline 23. & 15.96705 & 15.95705 \\
\hline 24. & -32.96289 & -32.96269 \\
\hline 25. & -0.05302 & -9.05264 \\
\hline 26. & 115.47923 & 116.47947 \\
\hline 27, & -0.75179 & -0.76178 \\
\hline 29. & 181.45230 & 181.45255 \\
\hline 29. & 8.49030 & 8.49031 \\
\hline 30. & 20.46555 & 20.46567 \\
\hline 31. & 29.28189 & 29.28189 \\
\hline 32. & SE.73378 & 53.73402 \\
\hline 33. & 28.25059 & 28.25001 \\
\hline 34. & 56.75200 & 56.75246 \\
\hline 35. & 171.29514 & 171.29538 \\
\hline 36. & 7.95957 & 7.95958 \\
\hline 37. & -137.23051 & -137.23050 \\
\hline 39. & 9.29603 & 9.29506 \\
\hline 39. & 27.54451 & 27.54453 \\
\hline 40. & 20.21671 & 20.21571 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 81. & 27．65631 & 27.56634 \\
\hline 82. & 152.23999 & 152．24040 \\
\hline 83. & 199050 & \\
\hline 84. & 236.92930 & 236.92917 \\
\hline 85. & 113．92509 & 113.82559 \\
\hline 86. & 33，33595 & 33.33598 \\
\hline 37. & 5.61693 & 5．51s85 \\
\hline 88. & 251．59129 & 251．59193 \\
\hline 89. & 88.40968 & 88.40999 \\
\hline 90. & 32．95035 & 32．751：3 \\
\hline 91. & －31．15sos & －31．15527 \\
\hline 92. & 10.11080 & 10.11093 \\
\hline 93. & \(7.5775{ }^{\circ}\) & 7．57733 \\
\hline 94. & 6．7ア377 & 5．73350 \\
\hline 95. & －389．5こ25 & －389．61903 \\
\hline 96. & －3．19934 & －3．19929 \\
\hline 97. & 52.63115 & 52.35135 \\
\hline 98. & 6.99970 & 0．99372 \\
\hline 99. & \(18.3=077\) & 18．32077 \\
\hline 100. & 20.8132 ？ & 20．91332 \\
\hline 101. & 21.55261 & 21．5．5252 \\
\hline 102. & 10．24672 & 10．24575 \\
\hline 103. & 18．80こ38 & 18.30245 \\
\hline 104. & 52．3285s & 52．32395 \\
\hline 105. & 31.94798 & 31.94812 \\
\hline 106. & －34．41727 & －34，41730 \\
\hline 107. & 47，30467 & 47.80510 \\
\hline 108. & 226.80511 & 225．90550 \\
\hline 109. & 7.74921 & 7.74924 \\
\hline 110. & 236．81850 & 26o． 11385 \\
\hline 111. & 15．11285 & 15．11283 \\
\hline 112. & 52.93440 & 52．93459 \\
\hline 113. & 52.37173 & 52.37178 \\
\hline 114. & 132．10753 & 132.10011 \\
\hline 115. & \＄2．88072 & 52.33083 \\
\hline 113. & 174.94783 & 174．95053 \\
\hline 117. & 322．45505 & 322．46580 \\
\hline 118. & 13．53755 & 13．53759 \\
\hline 119. & －125．85890 & －125．55934 \\
\hline 120. & 17.63596 & 17．63597 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 121. & 43.43253 & 43.43254 \\
\hline 122. & 34.08091 & 34.08084 \\
\hline 123. & 188.10962 & 189.11015 \\
\hline 124. & 200050 & \\
\hline 125. & 392.74048 & 392.74097 \\
\hline 126. & 189.89168 & 189.89169 \\
\hline 127. & 45.57524 & 45.57527 \\
\hline 128. & 12.01120 & 12.01123 \\
\hline 129. & 438.55127 & +33.55299 \\
\hline 130. & 140.78158 & 140.78198 \\
\hline 131. & 79.51997 & 77.52052 \\
\hline 132. & -14.90451 & -14.90425 \\
\hline 133. & 35.19135 & 36.19174 \\
\hline 134. & 15.03882 & 15.03833 \\
\hline 135. & 11.73750 & 11.73757 \\
\hline 136. & -294.57500 & -204.57007 \\
\hline 137. & 1.97067 & 1.87071 \\
\hline 138. & 80.01535 & 80.01543 \\
\hline 139. & 12.48334 & 12.4833 \\
\hline 140. & 27.73442 & 27.93442 \\
\hline 141. & 23.7437 & 23.74373 \\
\hline 142. & 30.51473 & 30.01481 \\
\hline 143. & 16.73779 & 16.73785 \\
\hline 144. & 33.14771 & 3.3.14778 \\
\hline 145. & 108,74369 & 100.74910 \\
\hline 146. & 51.20668 & 51.20682 \\
\hline 147. & -35.53403 & -35.53405 \\
\hline 148. & 113.17090 & 115.17159 \\
\hline 149. & 357.66504 & 357.65602 \\
\hline 150. & 18.47356 & 18.47357 \\
\hline 151. & 369.15894 & 369.15919 \\
\hline 152. & 22.86417 & 22.85417 \\
\hline 153. & 92.01759 & 92.01804 \\
\hline 154. & 79.53171 & 79.53188 \\
\hline 155. & 223.85229 & 293.95772 \\
\hline 156. & 82.013+4 & 92.01357 \\
\hline 157. & 320.53344 & 320.52344 \\
\hline 158. & 500.30388 & 500.30737 \\
\hline 159. & 20.22136 & 20.22137 \\
\hline 160. & -112.04002 & -112.03795 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 161. & 27.45103 & 27.45107 \\
\hline 162. & 61.66394 & 61.65396 \\
\hline 163. & 50.29973 & 50.29979 \\
\hline 164. & 279.56592 & 279.55592 \\
\hline 165. & 201050 & \\
\hline 153. & 613.35083 & 613.85205 \\
\hline 167. & 298.96940 & 293.95973 \\
\hline 169. & 52.28395 & 52.29397 \\
\hline 159. & 21.60178 & 21.60192 \\
\hline 170. & 707.04761 & 707.04980 \\
\hline 171. & 217.78024 & 217.78043 \\
\hline 172. & 148.44600 & 148.44652 \\
\hline 173. & 13.06591 & 13.06516 \\
\hline 174. & 75.37379 & 75.37424 \\
\hline 175. & 25.32075 & 25.320:9 \\
\hline 176. & 19.12080 & 19.12083 \\
\hline 177. & -120.05579 & -120.06703 \\
\hline 179. & 9.72117 & 9.72120 \\
\hline 179. & 117.93907 & 117.93929 \\
\hline 190. & 20.51707 & 20.51707 \\
\hline 181. & 41.43140 & 41.43143 \\
\hline 182. & 28.87038 & 29.97039 \\
\hline 183. & 43.11592 & 43.11597 \\
\hline 184. & 25.95960 & 25.95865 \\
\hline 195. & 54.23022 & 54.23030 \\
\hline 18. & 191.79515 & 191.79582 \\
\hline 187. & 79.55558 & 78.55672 \\
\hline 198. & -30.73451 & -36.73442 \\
\hline 189. & 220.30066 & 220.30161 \\
\hline 190. & 541.09131 & 541.09204 \\
\hline 191. & 34.25350 & 34.25374 \\
\hline 191. & 513.89390 & 513.89404 \\
\hline 193. & 33.50316 & 33.50 .310 \\
\hline 194. & 147.47825 & 147.47870 \\
\hline 195. & 117.32680 & 117.32597 \\
\hline 196. & 353.83130 & 353.83154 \\
\hline 197. & \(122.7+350\) & 122.74373 \\
\hline 199. & 530.99390 & 530.99390 \\
\hline 199. & 747.01095 & 747.81104 \\
\hline 200. & 29.66814 & 29.66812 \\
\hline
\end{tabular}
\begin{tabular}{rrr}
201. & -92.27605 & -92.27599 \\
202. & 41.11560 & 41.11560 \\
203. & 86.48598 & 95.48502 \\
204. & 72.76271 & 72.75280 \\
205. & 407.93848 & 407.93848
\end{tabular}
1
10
\(\stackrel{1}{i}\)
!

1
1
\(i\)
1
1
\(C\)

\section*{CN.EPALYG.S2KC.GNPDEF}

\begin{tabular}{lll}
1 & 1. & 40 \\
1 & 2. & .46 \\
& 3. & .10 \\
& 4. & .11 \\
& 5. & .08 \\
& 6. & 1984 \\
, & 7. & 31
\end{tabular}


CN. ERAJHV.S2KC. PVCSTI
\begin{tabular}{|c|c|c|c|c|}
\hline 1. & 0.011253 & 0.002673 & & 0.001303 \\
\hline 2. & 0.170800 & 0.041300 & 0.027900 & 0.026700 \\
\hline 3. & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 4. & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 5. & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 6. & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 7. & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 8. & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 9. & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 10. & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 11. & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 12. & 0.007500 & 0.010300 & 0.009500 & 0.005700 \\
\hline 13. & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 14. & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 15, & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 16. & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 17. & 0.151500 & 0.018300 & \(0.008+00\) & 0.001000 \\
\hline 19. & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 19. & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 20. & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 21. & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 22. & 0.007300 & 0.010300 & 0.009500 & 0.005700 \\
\hline 23. & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 24. & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 25. & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 26. & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 27. & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 29. & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 29. & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 30. & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 31. & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 22. & 0.170800 & 0.041300 & 0.027900 & 0.025700 \\
\hline 33. & 0.011253 & 0.002673 & 0.001843 & 0.001303 \\
\hline 34. & 0.011253 & 0.002573 & 0.001843 & 0.001303 \\
\hline 35. & 0.011253 & 0.002573 & 0.001843 & 0.001303 \\
\hline 36. & 0.011253 & 0.002673 & \(0.0018+3\) & 0.001303 \\
\hline 37. & 0.011253 & 0.002575 & 0.001843 & 0.001303 \\
\hline 38. & 0.011253 & 0.002673 & 0.001843 & 0.001303 \\
\hline 39. & 0.011253 & 0.002673 & 0.001843 & 0.001303 \\
\hline 40. & 0.011253 & 0.002673 & 0.001943 & 0.001305 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 41. & 0.0 .11253 & 0.002573 & 0.001843 & 0.001303 \\
\hline 42. & 0.011253 & 0.002573 & 0.001843 & 0.001303 \\
\hline 43. & 0.012134 & 0.003867 & 0.002944 & 0.001954 \\
\hline 44. & 0.012134 & 0.003857 & 0.002944 & 0.001754 \\
\hline 45. & 0.012134 & 0.003857 & 0.002944 & 0.001954 \\
\hline 45. & 0.012134 & 0.003857 & 0.002944 & 0.001954 \\
\hline 47. & 0.012134 & 0.003867 & 0.002944 & 0.001964 \\
\hline 48. & 0.034087 & 0.005517 & 0.004151 & 0.002109 \\
\hline 49. & 0.034087 & 0.003517 & 0.004161 & 0.002109 \\
\hline 50. & 0.034087 & 0.006517 & 0.004161 & \(0.00=109\) \\
\hline 51. & 0.034087 & 0.005517 & 0.004161 & 0.002109 \\
\hline 52. & 0.034087 & 0.005517 & \(0.00+151\) & 0.002109 \\
\hline 53. & 0.035989 & 0.009094 & 0.005533 & 0.0035 .55 \\
\hline 54. & 0.035989 & 0.009094 & 0.005538 & 0.003535 \\
\hline 58. & 0.035989 & 0.009094 & 0.006533 & 0.003535 \\
\hline 56. & 0.035989 & 0.009094 & 0.006538 & 0.003535 \\
\hline 57. & 0.035989 & 0.005094 & 0.006533 & 0.003535 \\
\hline 58. & 0.035989 & 0.009094 & 0.006533 & 0.003535 \\
\hline 59. & 0.035989 & 0.009074 & 0.006538 & 0.003535 \\
\hline 60. & 0.035989 & 0.009094 & 0.006553 & 0.003535 \\
\hline 61. & 0.035999 & 0.009094 & 0.005533 & 0.003535 \\
\hline 62. & 0.035989 & 0.009094 & 0.006538 & 0.003535 \\
\hline 63. & 0.113236 & 0.025900 & \(0.0185+13\) & 0.013115 \\
\hline
\end{tabular}

\section*{APPENDIX B}

\section*{CORRESPONDENCE OF FIRMS TO FIRM NUMBER}

To save programming time, each firm was assigned a number. This number is printed instead of the firm's name. This number appears in the first column of output in each set of firm-specific results.

The correspondence of each firm to its number is shown in the list below:
1. Atchison, Topeka and Santa Fe
2. Baltimore and Ohio
3. Bessemer and Lake Erie
4. Boston and Maine
5. Burlington Northern
6. Chesapeake and Ohio
7. Chicago and North Western
8. Chicago, Milwaukee, St. Paul and Pacific
9. Chicago, Rock Island, and Pacific
10. Clinchfield
11. Colorado and Southern
12. Conrail
13. Delaware and Hudson
14. Denver and Rio Grande Western
15. Detroit, Toledo, and Ironton
16. Duluth, Misabe, and Iron Range
17. Elgin, Joliet, and Eastern
18. Florida East Coast
19. Fort Worth and Denver
20. Grand Trunk Western
21. Illinois Central Gulf
22. Kansas City Southern
23. Long Island Railroad
24. Louisville and Nashville
25. Misgouri Pacific
26. Missouri-Kansas-Texas
27. Norfolk and Western
28. Pittsburgh and Lake Erie
29. St. Louis - San Francisco
30. St. Louis - Southwestern
31. Seaboard Coast Line
32. Soo ifine
33. Southern Pacific
34. Union Pacific
35. Western Maryland
36. Western Pacific
37. Alabama Great Southern
38. Central of Georgia
39. Cincinnati, New Orleans, Texas Pacific
40. Southern Railway
For example, firm 1 is the Atchison, Topeka and Santa Fe.

APPENDIX C:
ERRATA SHEETS
1. Delete the last paragraph on page 3-1. It begins with "The cash flow model. . ." and ends with ". . .accessed by typing." Replace with:

The cash flow model is stored at the EPA's Washington Computer Center. Hardware there includes an IBM \(370 / 168\) model 1 with six million bytes of main memory and an IBM model 3032 with six million bytes of main memory. The source code is located in the file:

CN.EPAJHV.S2KC.CASHFLOW
It is accessed by typing:
2. Insert the section below after the first sentence of the third paragraph on page 3-2. This sentence ends with ". . Of the area EPAJHV.S2KC." At the end of the ingerted section, start a new paragraph. The new paragraph begins with "To run CASHFLOW, one . . ."

Inserted section:
RUNCASH is stored in the file:
CN.EPAJHY.S2KC. RUNCASH
at EPA's Washington Computer Center.

The Job Control Language (JCL) source code of RUNCASK is:
```

//EPAJHVSK JOB (S2KC,MLYG),'STEWARTKAGAN',PRTY=5,TIME=5
/*ROUTE PRINT HOLD
//EXEC FTGICLG,GREGION = 400K,LPARM= 'NOSOURCE'
//FORT.SYS IN DD DSN=CN.EPAJHV.S2KC.CASHFLOW,DISPESHR
//GO.FTO1FOO1 DD DSNUCN.EPALYG.S2KC.YDINV,DISF=SHR
//GO.FYO2FOO1 DD DSN=CN.EPALYG.S2KC.GNPDEF,DISP=SHR
//GO.FT03F001 DD DSN=CN.EPAJHV.S2KC.PVCST1,DISP=SHR
//GO.FT24F001 DD DSN=CN.EPALYG.S2KC.CAST8ONE,DISP=SHR
//GO.FT21FOO1 DD DSN=CN.EPAJHV.S2KC.NISC,DISP=SHR
//GO.FT22F001 DD DSN=CN. EPAJHV.S2KC.BASE,DISP=SHR
//GO.FTO6F001 DD SYSOUT=A

```
3. Replace Figure 1 on page 3-9 with the attached figure.
4. Replace Table 3-3 on pages 3-17 and 3-18 with the table below.
5. Replace the text of section 3.2.2.1 on page 3-2 with the following text:

The eash flow model requires six data files to operate. Multiple data files were used to allow easy access to individual datums and to separate the data by function.

Table 3-1 summarizes the names, nature, contents and sources of each data file. Three of the files are never changed. They contain firm by firm railyard inventories, the Gross National Product Deflators for the years 19731978 and historical financial data on the individual railroad firms. One file, CN.EPAJHV.S2KC.MISC contains key Einancial parameters and CN.EPAJHV. \(52 \mathrm{KC} . \operatorname{PVCSTX}\) (where \(X\) is \(1,2,3, \ldots 8\) ) and CN.EPAJHV.52KC.CASTXXX (where XXX is ONE TWO,THR,...EIG) contain data which change with each regulatory scenario under evaluation.


Figura 1. Flow Diagram of Rallroad Cashflow Model.

TABLE 3-3
ARRAY DEFINITIONS
\begin{tabular}{|c|c|c|c|}
\hline ARRAY & DIMENS ION & FORTRAN TYPE & DEFINITION \\
\hline YDCST & \((40,6)\) & Real & Yearly investment in 1980 dollars by yard type, beginning in first year of compliance \\
\hline YDDEP & \((40,6)\) & Real & Yearly depreciation by yard type in nominal dollars, beginning in 1980. \\
\hline BASE & \((60,78)\) & Real & Basic historical financial data 1973-1978 by firm \\
\hline IYEAR & (15) & Integer & Tells which year individual net income forecasts correspond to \\
\hline YDINV & \((50,5)\) & Integer & ```
Firm-by-firm inventory by
yard type (Hump, Flat
Classification, Elat Indus-
trial)
``` \\
\hline HISRAT & (50) & Real & Ratio of net present value of future cash flows to firm net worth, historical basis \\
\hline BASRAT & (50) & Real & Ratio of net present value of future cash flows to firm net worth, baseline forecast basis \\
\hline FORRAT & (70) & Real & Ratio of net present value of future cash flows to net worth, post-compliance forecast \\
\hline PVINV & (70) & Real & Present value of investment costs, by firm \\
\hline PVDEP & (70) & Real & Present value of depreciation, by firm \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ARRAY & DIMENS ION & FORTRAN TYPE & DEFINITION \\
\hline INIINV & (6) & Real & Initial investment costs by yard type \\
\hline PVCF & \((70,3)\) & Real & Present value of cash flows. Rows: firms. Colums: historical basis, baseline forecast basis, post-compliance forecast basis \\
\hline PVOM & (70) & Real & Present value of operating and maintenance expenses \\
\hline FRCAST & (70) & Real & First-year investment cost by firm \\
\hline PVNW & (70) & Real & 1973-1978 net worth extrapolated to 1980 , 1 inearly \\
\hline gnpdef & (8) & Real & Gross National Product Deflators 1973-1978 \\
\hline Income & \((60,60)\) & Real & post-compliance net income forecast 1980-2010, by firm, by year \\
\hline BASINC & \((60,60)\) & Real & Baseline forecast net income forecast 1980-2010, by firm, by year \\
\hline ANSWER & \((70,5)\) & Real & Columns: Net present value of future cagh flows, historical basis before and after compliance, baseline forecast before and after compliance, post-compliance forecase after compliance. Rows: Firms \\
\hline
\end{tabular}
\[
3-60
\]
6. Replace Table 3-1 on page 3-3 with the attached table. 7. Add this sentence to the second paragraph on page 3-4:
"The GNP deflators must be greater than zero and less than 1,000.
8. Add this sentence to the first paragraph on page 3-5.
"The allowable range of costs in this file is 0 to 99.9999999 (expressed in millions)."
9. Add this sentence after the last sentence of the last paragraph on page 3-5.
"The allowable range of this data is +9999.99999 to -999.99999 (expressed in miliions) and the format code is 2(F10.5,2X).
10. Change the last sentence of the second paragraph on page 3-6 from:
"The parameters, in order, and their respective format codes are shown in Table 3-2." to:
"The parameters, in order, their range of allowable input and their format codes are shown in Table 3-2."
11. Replace Table 3-2 on page 3-7 with the attached version of Table 3-2.
12. Add this sentence to the last paragraph of page
"The range of allowable input is 999999.999 to \(\mathbf{- 9 9 9 9 9 . 9 9 9}\)
for net income and net worth, and 99999.999 to -9999.999
for equity in undistributed earnings of affiliates and deferred taxes (expressed in millions)."

TABLE 3-1
DATA FILES SUMMARY
\begin{tabular}{|c|c|c|c|}
\hline FILE NAME & NATURE & CONTENTS & SOURCE \\
\hline CN.EPALYG.S2KC.YDINV & Never changes & Firm-by-firm yard inventory & Reference 1 below \\
\hline CN.EPALYG.S2KC.GNPDEF & Never changes & Gross National Product Deflators, 1973-1980 & U.S. Department of Commerce \\
\hline CN.EPAJHV.S2KC.PVCSTX; \(X\) may be \(1,2,3,\). . 8 & Changes for each regulatory scenario & Yearly investment and depreciation charges, by yard type & Energy Resources Co. Inc. (ERCO) \\
\hline CN. EPALYG.S2KC.CASTBXX; where \(X X X\), is ONE, TWO, THR, FOU, FIV, SIX, SEV OR EIG & Changes for each scenario & Net income forecasts - baseline and after regula~ tion & Energy Resources Co. Inc. (ERCO) \\
\hline CN. EPAJHV.S2KC. BASE & Never changes & Historical financial data & Assembled by Synergy, Inc. \\
\hline CN. EPAJHV.S2KC.MISC & Can be changed & Financial Parameters & Energy Resources Co. Inc. (ERCO) Department of Commerce \\
\hline
\end{tabular}

\footnotetext{
1United States Environmental Protection Agency, Background Document for Final Interstate Rail Carrier Noise Emission Requlation: Source Standards. EPA 550/9-79-210, December 1979. Appendix F.
}

TABLE 3-2
KEY FINANCIAL PARAMETERS: FILE EPAJHV.S2KC.MISC
\begin{tabular}{|c|c|c|c|}
\hline & DATA ITEM & RANGE OF ALLOWABLE INPUT & FORMAT CODE \\
\hline 1. & Number of Firms & 1 to 99 & 12 \\
\hline 2. & Corporate Tax Rate & . 99 to 0 & F3. 2 \\
\hline 3. & Investment Tax Credit & . 99 to 0 & F3. 2 \\
\hline 4. & Discount Rate & .99 to 0 & F3. 2 \\
\hline 5. & Inflation Rate & . 99 to 0 & F3. 2 \\
\hline 6. & Construction Year & 1980 to 2011 & 14 \\
\hline 7. & Project Time Horizon & 1 to 31 & I2 \\
\hline
\end{tabular}```

